A 0.35-V 5,200-µm² 2.1-MHz Temperature-Resilient Relaxation Oscillator with 667fJ/cycle Energy Efficiency Using Asymmetric Swing-Boosted RC Network and Dual-Path Comparator

Ka-Meng Lei¹, Pui-In Mak¹, and Rui P. Martins^{1,2}

- 1 State-Key Laboratory of Analog and Mixed-Signal VLSI University of Macau, China
 - 2 Instituto Superior Técnico, UL, Portugal

Outline

>Introduction

- Theoretical Analysis
- Proposed Architecture
- Measurement Results
- ≻Conclusion

Duty-Cycling in ULP Radios for Power Saving

Typical IoT Device Duty-cycling the device to save power 2.5-4.2 V •As low as 0.1% Power Sensor \succ To effectively achieve duty-cycling: Accurately wake up the device Processor Transceiver Li-ion • Low-power in sleep mode Reading and Data processing data transfer $E_{TOTAI} = P_{TRX} \times T_{ON} + P_{SIFEP} \times T_{OFF}$ Sleep Standby Transmit current \succ Two methods to wake the device up (nA-µA) (mA)(µA-mA) •Timer oad Ultra-Heavy-Load Light-load •Wakeup receiver Light-load

Fully-integrated timer for miniaturization

W.-L. Zeng et al., TCAS-I'20

Energy-Harvesting for Self-Sustainability

Energy harvesting for perpetual operation
 Interim DC-DC converters incur power loss
 & cost

Key Challenge: to operate at a sub-0.5V, i.e. ultra-low-voltage (ULV)?

Architecture of Fully-Integrated Timer

Efficiency Using Asymmetric Swing-Boosted RC Network and Dual-Path Comparator

Simplified RxO Operation

Simplified RxO Operation

Theoretical Analysis

$$(V_{CM,D} + V_{DD})e^{-\frac{T_1}{kRC}} = V_{CM,U},$$

$$(V_{CM,D} - 2V_{DD})e^{-\frac{T_1}{RC}} + V_{DD} = V_{CM,U},$$

$$(V_{CM,U} + V_{DD})e^{-\frac{T_2}{RC}} = V_{CM,D},$$

$$(V_{CM,U} - 2V_{DD})e^{-\frac{T_2}{kRC}} + V_{DD} = V_{CM,D}.$$

Assume $T_1 = T_2$,

$$\binom{V_{DD} - V_{CM,D}}{V_{DD} + V_{CM,D}} ^{k} = \frac{V_{CM,D}}{2V_{DD} - V_{CM,D}} (\frac{V_{CM,U}}{2V_{DD} - V_{CM,U}})^{k} = \frac{V_{DD} - V_{CM,U}}{V_{DD} + V_{CM,U}} k = \frac{T}{2RC} / \ln(\frac{1 + 3e^{-T/2RC}}{1 - e^{-T/2RC}})$$

Theoretical Analysis

$$\sigma_{jit} \propto \frac{V_{n,xy}}{S_{xy}}$$

$$S_{xy} = \frac{dV_{x,y}}{dt} \left(t = \frac{T}{2} \right)$$

$$S_{xy} = -\frac{1}{RC} \left(V_{CM,D} - \frac{V_{CM,D}}{k} + \frac{V_{DD}}{k} \right)$$

➤Key takeaway:

- •A large k favors ULV design
- •A large k also penalizes the jitter

> k = 2.4 and $V_{CM,U} = 0.23 V (V_{DD}=0.35V)$.

Proposed ULV Dual-Path RxO

> NMOS-input + PMOS-input amp. for comparisons in $Ø_{1,2}$ > Logic gates to generate the CLK signals

Amplifier Implementation

Simulated gain: >27dB
 CMFB to safeguard the operation

Amplifier Implementation

Min. V_{DD} limited by comparator $V_{SD,1} + V_{DS,3} + V_{DS,5}$ $|V_{DS}| > 3V_T (V_T = 34mV @ 120°C)$

Logic Gates

Logic gates turn the output of amplifiers to CLK
 Delay cell to remove the undesired glitches
 Overall delay: vary <1% of the period from -20 to 120°C

Temperature-sensitive t_{delay} affects RxO's T_{OSC}
Raising the amplifiers' power penalizes the efficiency

$ightarrow Delay \propto 1/I_{Bias}$

> Track the delay and compensate in the RC-network \rightarrow Temperature-resilient operation

Delay generators for both channels Pulse width inversely proportional to I_{BN}/I_{BP}

➤ r of the RC branches is halved when Ø_{FH} = 1
 ➤ Mismatch/Process variations are calibrated through C_P and C_N

➤ r of the RC branches is halved when Ø_{FH} = 1
 ➤ Mismatch/Process variations are calibrated through C_P and C_N

CLK Boosters

R_{ON} of the switch is influential at 0.35V
 Leakage current of the switch also matters

CLK Boosters

\succ CLK boosters to boost the swing (3×V_{DD})

CLK Boosters

Variations of R_{ON} (NMOS) reduced by 8600× Leakage current reduced from 307 to 0.8 nA at 120°C

➢ Fabricated in 28-nm CMOS 1P10M process
➢ Area: 5,200µm²
➢ $P = 1.4 \mu$ W at 22 °C & f = 2.1 MHz (N = 7)➢ Energy efficiency: 667fJ/cycle

>RMS Jitter: 800 ps (0.15%) >Accumulated jitter: increases ∝ √N up to ~60 cycles >Long-term stability: 210 ppm (gating time > 0.1 s)

Performance Summary and Comparison

	Koo, ISSCC'17 [11]	Mikulić, ESSCIRC'17 [8]	Liu, JSSC'19 [12]	Savanth, JSSC'19 [9]	Lee, JSSC'20 [13]	This work
Process (nm)	180	350	65	65	180	28
Frequency (MHz)	0.44	1	1.05	1.2	10.5	2.1
V _{DD} (V)	1.4 - 3.3	3 - 4.5	0.98 - 1.02	0.9 - 1.8	1.4 - 2.0	0.35 - 0.38
Power (µW)	21.3	210	69	0.82	219.8	1.4
Energy efficiency (pJ/cycle)	48.4	210	65.7	0.68	20.9	0.67
T _{range} (°C)	-20 to 100	-40 to 125	–15 to 55	-20 to 125	-40 to 125	-20 to 120
TC (ppm/°C)	169	24.3	4.3	100	137	158
Variation across V_{DD}	0.04%	0.42%	0.17%	±0.54%	2.64%	2.3%
Line sensitivity $\left(\frac{\Delta f}{f}, \frac{\Delta V}{V}\right)$	0.03%	0.84%	4.25%	±0.54%	6.16%	26.8%
Area (µm²)	58,000	40,000	51,000	5,000	15,000	5,200
Period jitter (ps _{rms})	1,060	-	160	-	9.86	800
Startup time (µs)	-	1§	8	10	-	3.6
No. of samples	100	5	-	7#	15	7
FoM ₁ (dB)▲	162	165	174	183	168	181
FoM ₂ (dBc/Hz)*	–152.7 (@10 kHz)	-	-	-	–157.7 (@1 kHz)	–143.4 (@ 10 kHz)

[#]For temperature stability measurement.

[§]Deduced from the numbers of cycles to start, which may underestimate the true startup time.

$$FoM_1 = 10\log(\frac{f \cdot T_{range}}{Power \cdot TC})$$

$$FoM_2 = PN - 20\log\left(\frac{f}{f_{offset}}\right) + 10\log(\frac{Power}{1mW})$$

Comparison with State-of-the-art

Conclusion

- ≥2.1-MHz and 0.35-V ULV RxO in 28-nm CMOS
- Service Asymmetric RC-network to shift V_{CM,D} and V_{CM,U}
- Dual-path comparator for comparison
- >Open-loop delay generator to compensate the delay
- >Active Area: $5,200 \mu m^2$
- Energy efficiency: <u>667 fJ/cycle</u>
- ≻FoM₁: <u>181dB</u>
- A promising solution for ULV and ULP IoT timer

Acknowledgement

University of MacauFDCT Macau (0043/2020/A1)

The End